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Abstract—The boundary element (BE) analysis is formulated by a symmetric (Galerkin weighted-
residual, double-integration) approach. rather than by a traditional collocation or by a non-
symmetric-Galerkin approach. The internal variable associative elastoplastic material model is
discretized in time by a stepwise-holonomic, backward-difference integration scheme: it is then
enforced in a weighted-average sense over cells and reformulated in terms of cell generalized
vartables.

In the above context the following results are established under suitable constitutive hypotheses :
(a) a minimum characterization of the solution to the discretized step-problem in finite increments
(b) a convergence theorem concerning i conventional iterative algorithm for solving this problem ;
(¢) a proofl of the stability of the marching selution method, in the sense of non-amplification of
crrors along a finite step sequence. An illustrative example corroborates the theoretical results.

NOTATION

Bold face symbols denote matrices and column vectors. 0 is a vector whose entries are all zero. Inequalitics apply
componentwise. Superseript t means transpose, a dot denotes time derivative. [n order to remove possible
ambiguity between argument of a function and multiplication, in the latter case i dot will precede the parenthesis.
Other symbols are defined where they are used for the fiest time,

INTRODUCTION

The traditional boundary clement (BE) methods [see e.g. Banerjee and Butterfield (1981);
Mukherjee (1982); Brebbia er al. (1984)] are centered on integral operators and (after
discretization) matrix operators, which do not exhibit properties (such as sclf-adjointness
or symmetry and sign-definiteness) leading to meaningful and useful theoretical conclusions
available in other formulations and solution methods. A kind of widespread dissatistaction
due to this fact led to various “symmetrization” procedures. Confining ourselves to the
quasi-static elastoplusticity of concern in this paper, we mention below earlier proposals
and developments which appear to be somehow related to the present results.

Algebraic “forced™ symmetrization of matrix operators (specifically stiffness matrices)
arising from conventional collocation approaches was put forward and advocated by some
authors in clasticity [¢.g. Zicakiewicz ¢t al. (1977)]. It was extended to plasticity by Maier
(1983) and Maicr and Nappi (1984), who showed how “symmetrized™ BE formulations
preserve the validity of some meaningful aspects of plasticity theory (extremum char-
acterizations of incremental solutions, shakedown and bounding theorems).

The Galerkin, double-integration approach leading to symmetric BE formulations,
proposed first for lincar-clastic problems by Sirtori (1979), has been developed in clasto-
plasticity by Maicr and Polizzotto (1987), Polizzotto (1988) and Maicer ¢t al. (1989, 1990)
and provides the basis for the present contributions. Recent alternative symmetrizations
pointed out by Teixeira de Freitas (1990) and Bui (1990) exhibit interesting features, but
their computational implications and extensions to plasticity are still to be investigated.

In computational plasticity centered on finite element (FE) discretizations in space.,
much attention has been paid in recent years to step-by-step marching solution methods.
This research topic has been vigorously tackled particularly by Martin and his co-workers
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[see e.g. Martin er ¢l (1987} Caddemi and Martin (1991) : Ortiz and Martin (1989)]. with
reference to internal variable descriptions of the plastuc material behaviour. Among other
important contributions are those by Krieg and Krieg (1977), Ortiz and Popov (1983).
Stmo er al. (1988) and Perego (1988). Earlier work in this area of stepwise-holonomic
elustoplastic analysis was based on the piecewise linearization of the vield surface, and
centered on extremum properties of step solutions and quadratic programming concepts
and algorithms [see representative paper by De Donato and Maier (1972) and surveys by
Maier and Munro (1982)]. It appears that himited interaction has occurred so far between
the above mentioned developments in computational plasticity by FE and those in the
traditional BE context [see ¢.g. Brebbia e af. (1984) ; Cruse and Polch (1986)].

In this paper a contribution is made to BE clastic-plastic analysis in directions, in a
sense, parallel to those in which progress was recently achieved in FE inelastic analysis as
mentioned above.

The material behaviour is described heretn by a fairly generall internal variable elastic-
plastic constitutive law. which s integrated in time by a backward-difference scheme.
Discretized boundary integral equations. such that symmetry of their coctlicient matrices
may be guaranteed, are generated by the following provisions as proposed by Maier and
Polizzotto (1987) : use ot static and kinematic sources on the boundary ; space discretization
by a Gualerkin weighted-residual approach; “consistent™ modcelling of domain unknown
ficlds by suitable “generalized vartables™ tor cells o weighted average (instead of pointwise)
enforcement ol the matertal model. On this basis, the Aindings presented herein concerning
the diseretized step-problem in finite increments are as follows : (i) Suflicient and necessiry
conditions, i terms of optimization problems, Tor the solution to the fimite step elastic
plastic problem : these results are related to various extremum charuacterizations of solutions
to finite-step boundary value problems recently established by Comi er af. (1991a). (b) A
proof of convergence of anterative, predictor corrector, suceessive substitution algorithm
for solving this problem ;o basically similar path of reasoning led Comi and Maier (1990)
to an analogous result in the FE context. (¢) A proof” of the stability of the proposed
marching, step-by-step solution procedure; here stabidity means the lack of crror ampli-
fication along a scquence of loading steps, in the sense of the non-lincar “B-stabihity™ of
Simo (1991) and Simo and Govindjee (1991).

The theoretical results expounded are corroborated by numerical tests carried out
using a two-dimensional implementation ol the symmetric BE method presented in detail
in Maier e al. (1991).

GOVERNING RELATIONS

We refer to a homogencous elastic-plastic solid or structure which occupies the volume
Q (conceived as an open domain) with the boundary I'. Under the hypothesis of small
deformations (“geometric™ linearity) the response of this solid is sought to a given history
of the following actions: displacements 7,(r) on the constrained portion ', or I'; tractions
p.(t) on the complementary portion [, ; body forces b,(¢) and imposed “initial” {such as
thermal) strains (7,,(1) in Q. The external forces are assumed to be conservative, A Cartesian
reference and the index summation convention are adopted. Commas will denote space
derivatives : dots time derivatives, “Time™ 1 represents any variable which monotonically
increases in the physical time and merely orders events; this is equivalent to stating that
the mechanical phenomena to study are time-independent or “inviscid ™.

The quasi-static evolution of the considered solid from the original state (say the
unstressed state at £ = 0) is governed by the set of relations:

a,,+bh =0 inQ. o.n=p onl, (n

.t aetr

£, = Mu,+u,) inQ. w=aq onl, (2)

Ly =4y *"“«, +’3l,',- C, = Ci O (3)
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$(0,.q9) <0, £20. ¢2=0 (4)
¢ : i R A
= (O ) = — 37 (0, g )4 3
& =z o AT Gy (O a0 Q)
cw
qn = 7— (M) (6)
My
D= G &, ~qitin = 0. N

Here, by a customary notation : eqns (1) express equilibrium (n, being the unit outward
normal to I, which is assumed to be “smooth™ for simplicity) ; eqns (2) enforce geometric
compatibility ; eqns (3a, b) reflect the strain additivity and Hooke's law (C, denoting the
positive-definite elastic compliance tensor with the usual symmetries and &/} plastic strains).
Equations (4) formulate the yield criterion by means of a single differentiable yield function
¢ (no “corners” for the sake of simplicity in further developments) ; eqns (5) express the
generalized flow rule of the plastic material model (associative if ¢ = ¢). We denote by g,
(h=1,....n,) the static internal variables and by 5, the conjugate kinematic internal
variables [sce ¢.g. Halphen and Nguyen (1975)]. It n, = 0 the constitutive law specializes
to ideal plasticity. The vector notation adopted here for internal variables does not mean
that the possibility of their tensorial nature (say ¢,;) is ruled out. In eqn (6) which relates
static to kinematic internal variabies, w can be interpreted as the “stored™ free energy due
to structural rearrangements at the microscale. Inequality (7) expresses the thermodynamic
requirement at the rate of dissipation 1.

CONSTITUTIVE RESTRICTIONS

We list below the further assumptions which are adopted for the class of constitutive
models described by egns (4) (7) and which will be used later 1n the paper in order to
establish extremum, convergence and stability propertics.

(2t) The plastic strain and kinematic internal variable rates (67 and #,) are “assoctated ™
to the current yield locus detined by eqn (da) ; in other words i = ¢ in ¢qns (5).

(b) The yicld function ¢ is convex in both stresses 4, and static internal variables ¢,

(¢) The potential w of the internal vartables (f.c. the “stored™ encrgy denstty) is a
convex function of g,,.

(d) The yicld function ¢ is expressed as the difference of two terms : an effective stress
S and a constant yicld limit y; the former addend is a positively homogeneous function of
order one of the stresses and the static internal variables.

It is worth noting that assumptions (a) (¢) imply the validity of Drucker’s stability
postulate, Drucker (1951). In fact, normality of plastic strain rates and convexity of yield
surfaces are consequences of (a) and (b), which exclude frictional materials with non-
associative flow rules ; hypothesis (¢) could casily be seen o imply that the second order
plastic work cannot be negative (164,52, > 0), thus ruling out softening behaviour. It might
also be shown that a multiplicity of yicld modes implying ““corners™ of yield surface would
preserve the above essential features of material stable behaviour and that, in this case, the
existence of the potential w(y,) implies “reciprocal hardening™ between yielding modes,
Comi et al. (1991a).

Hypotheses (a)-(c) represent physically meaningful restrictions on the coverage of
eqns (4)-(7), which thus become a description of the still broad category of so-called
“generalized standard elastoplastic materials™ (Halphen and Nguyen, 1975) with a single
yield mode. On the contrary, hypothesis (d) entails no loss of generality, since it might
easily be shown to reflect an always possible equivalent way of representing yield criteria.
As a consequence of (d). by Euler’s theorem,
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.of cf
f= -'/ G, + ,'j* 4.,
0y,

this expression will be used below in egn (8). noting that the denivatives of f and ¢ coincide,
since f and ¢ ditfer by the constant v,

DISCRETIZATION IN TIME

For the approximate time integration of the differential relation set (1)-(6). we will
adopt the following traditional strategy. Consider a monotonic sequence of instants ¢, = 0,
bivoooityct, o = t,+ At Letall variables be known at ¢, and mark them by barred symbols.
The increments (marked by A) of the unknowns are sought for the given increments over
At of the external actions, namely for given Ah,. Af,. Ap,. Ad,.

This problem is referred to henceforth as “finite-step™ elastoplastic boundary value
problem. [t concerns finite increments and it is path-independent (or holonomic) over the
relevant time interval Ar. In other terms, the exact time integration of the non-lincar
differential governing relation set (1)-(6) will be approximated by a “stepwise-holonomic™
analysis.

While the lincar egns (1)-(3) can be directly rewritten in terms of increments, the non-
linear constitutive relations (4)-(6) must be algebrized according to some approximation
scheme. Various schemes have been proposed and investigated in the literature, based on
diverse hypotheses of the yiclding process over Ar: forward Euler scheme:; generalized
trapezoidal rule; gencralized mid-point rule; backward-difference method [see e.g. Ortiz
and Popov (1985); Simo ¢f al. (1988)]. We choose here the backward-difference method
which was proposed and applicd in carlier works to clastoplastic analysis by quadratic
programming (De Donato and Maier, 1972) and extensively studied recently in more
general contexts by Martin and his co-workers (Martin er of.. 1987). For the present
constitutive models the backward-difterence concept materializes in the following approxi-
mate algebraic version of egns (4) (6):

Cep ‘b
(/) = ’()'/ ((;’\ + A(Irw (7/\ +A(IA ) : ({;:/ +A(T,/) + 2 l/ (6” + An"' (7‘ +All‘*) ' (‘i’l +‘(\(Ih) -V < 0
¢ " oy,
(8)
& _ . oo _ .
Ad = (6. +Ac, 4 +Aq )AL Any = — wl (3, + Ao, g +Agi )AL (9)
‘o, : o
q" ' . .
Gt Agr =) AR 0, pAL=0. (10)
CHy

Equations (8)-(10), together with eqns (1) -(3) rephrased in increments, form a relation set
which governs the finite-step b.v. problem to be discretized in space below and discussed
in the sequel.

INTEGRAL EQUATIONS FOR ELASTIC PLASTIC ANALYSIS

For the sake of brevity, henceforth we will adopt matrix notation and assume zero
body forces and, later, zero initial strains (body forces b would merely imply sclf-evident
extra addends in eqn (11) and in its conscquences). Thus 6. & and 0 will denote vectors of
the independent components of stress. total strain and inclastic or imposed strain tensors,
respectively (with the “engincering definition™ of shear strains). The index sum convention
no longer holds.

Consider the linear clastic b.v. problem governed by eqns (1)-(3) with & = 0.
Unstarred symbols will denote the solution to it for the given external actions: starred
symbols mark a “fictitious”™ auxiliary clastic state, i.¢. a solution to the problem for suitably
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chosen fictitious external actions. Then Betti’s reciprocity theorem of linear elasticity can
be expressed by the equation:

f (p'u* —u'p*)dI'+ f 0'c* dQ = J. ¢'9* dQ+ L b*'u dQ. (t1)
r Q 8]

The traditional choice is to identify the starred elastic state with Kelvin's fundamental
solution (or with a half-space solution: Mindlin's in three-, Melan’s in two-dimensional
cases). This leads to the customary integral representation of displacements (Somigliana
identity) and to the consequent boundary integral equation with a non-symmetric (non
self-adjoint) integral operator [see e.g. Banerjee and Butterfield (19381) and Brebbia et al.
(1984)).

Instead we will follow the approach proposed by Sirtori (1979) in elasticity and by
Maier and Polizzotto (1987) in elastoplasticity. in order to generate symmetric operators.
To this purpose. let us choose as fictitious elastic state in eqn (11), the response of the
clastic space Q, (embedding Q) to distributions of surface forces F* and displacement
discontinuitics D* on the boundary I and of imposed strains 0* on the volume Q. Such a
lincar elastic response by Q. in terms of displacements, tractions and stresses can be
expressed by superposition of effects using the matrices of Green's functions for Q. denoted
by G (.k =u.p,a):

o

“*‘;‘)=JCuu(x‘i)F‘(s‘)dI“Jr G, (X.EHOD*E AT+ | G (x.E0*(H dQ (12a)
N 2

J;> v
j G (. ED*E) AT+ | G,.(x, E)0%(E) dQ (12b)
r 113

o

PH(x) = j G (X EF*E) dlM+

~

o*(x) = j G, (x.5HF* (&) dTM+ J G, (x.5D*E) AN+ 1 G (x,5)0*(5) dQ. (12¢)
5 r 0

xefd

LY

In the kernels of eyns (12), x = {.x,} represents the point where the effect is evaluated
(ficld point), & = {&,} the point where the unit concentrated source is applied (load or
source point). The symbols x* or §* and x~ or €~ denote points which are exterior and
interior to Q, respectively, and are infinitely close to points xor fon C. By ' and ' we
will denote the surfaces formed by the sets of such points. Thus the static and kinematic
discontinuitics which generate the auxiliary elastic state (12) can be expressed as

F*O) =p*(C7)—p*(& ). DX =u*(€")—u*& ). (13)

The above Green function matrices Gy, [using a suitable notation proposed by
Polizzotto (1988)], have the following meanings.

(a) For k = u: displacements (h = u), tractions (# = p) and stresses (h = @) in x due
to a unit concentrated force acting in & and directed according to the reference axis x = 1,
2. 3 in turn, for the three columns of G,,,,.

(b) For k = p: quantitics as above, but due to a concentrated displacement dis-
continuity across I' with unit integral over I', acting in € and directed according to the
reference axis « = 1, 2, 3 in turn.

(c) For k = a: similar quantitics as above, now due to a concentrated imposed strain
with unit integral over Q. acting on point & and with only one non-zero component aff. in
turn, for the six columns of G,, in three-dimensional situations (shear strain for a # f,
intervenes only once).
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Clearly. when the effect 1s a traction at x (4 = p). the outward normal nto I in x
intervenes in the explicit expression of matrix G, fork = w. p. 0.

The above mentioned concentrated unit sources cun be described as the following
special distributions of traction (static) discontinuities. displacement (kinematic) dis-
continuities and imposed strains. using the Dirac “function™ é(x — &) and indicating by
superscripts the unit component (the others being zero) :

Fo(x—&). DWd(x—8&. 075(x—-2). (14

Note that the three matrix kernels above referred to in (a) describe the usual Kelvin
elastic state and their analytical expressions can be found in any book on BEM. The three
kernels (b) should probably be referred to as Gebbia state in view of the extensive but
forgotten study conducted by this author about a century ago (Gebbia. 1891). The Green
function matrices (c) were given a correct definitive form in Bui (1977) and are used in all
recent inelastic analyses by BE.

The three kinds of Green functions are gathered below with specification of their
singularity order for x = § in three-dimensional situations:

Guu(r l) Gup(r 7:) Gun(rV:) (lSd)
G.(r Yy GurY Gurh (15h)
G.r?) Gur Yy Gor (15¢)

Among the above kernels there are interrelations of two kinds:

(i) those which arise from the very nature of the effect considered in x and of the source
considered in & these relationships imply derivatives with respect to x or &

(i) relationships which are due to Betti's reciprocity theorem could be derived tfrom
egn (1) (Maier and Polizzotto, 1987) and can be cxpressed, for x £ &, in the following
compact form:

Guix, &) =GuE x)y hk=upo. (16)

A detailed discussion of these refations can be found in Sirtort er of. (1991), with emphasis
on the special ditticulties concerning G, and the hypersingularitics of G, for x = €.

As usual in BE inclastic analysis, let us subdivide into clements the boundary IM and
into cells the part of domain Q where yicelding is expected.

Using suitable polynomial interpolations contained in shape matrices ¥, we discretize
both the actual fields and the source distributions which generate in Q, the fictitious,
auxiliary (starred) fields

p(x) =W, ()P, u(x) ="P (x)U. #(x) =", (x)O (17
FH(x) = WX(X)F*™*, D*(x) = PI)D** 0*x) ="¥Ix)O*" (18)

Here vectors P, U, O, F**, D**, @** collect the values assumed by the relevant quantitics
at the nodes. The nodes for field modelling in Q will be regarded as chosen in its interior,
in order to simplify the preliminaries for subsequent developments.

The interpolation matrices W are constructed over each element or cell but are con-
ceived as defined. for each node. over the whole I or 2, as “support functions™ of that node,
taking into account the possible continuity requirements at interfaces between adjacent
boundary elements or cells.

The discretization represented by egns (17) and (18) shall comply with the following
restrictive provisions, whose motivations will become clear later:
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(i} The displacements u(x) and the kinematic discontinuities D*(x) are continuous
across interfaces between adjacent elementson I'.

(it} The models for corresponding actual and source fields are equal: ¥, = W¥, for
i=up,8.

(iii) The shape function pertaining to an unknown nodal traction is orthogonal to the
shape function relevant to any unknewn nodal displacement. Clearly, this third requirement
is not necessarily satisfied, and becomes meaningful. only for nodes whose “*support regions™
{where the shape function does not identically vanish) is intersected by the border between
the constrained and free portions I, and I', of the boundary.

Let us set:

= L ¥i(X)e(x)dQ (19

G = f J“l’},z(x)G,,k(x. Y, (&) dxdE: hk=uwupo, KK =pub (20)

where i" and &” mark the conjugate of / and &, respectively : dx stands for dI'(x) or dQ(x),
d¢ for dI(&) or dQ(&) and the integration domains are defined by the indices (e.g. if h = g,
k = p,and, hence, &' = 0, k" = u: x runs over Qand § over I',).

As a consequence of the reciprocity eqns (16) and of the discussion of the case & = x
developed in Sirtori ef al. (1991) and not repeated here, one may write (5, denoting the
Kronecker symbol ; no index sum convention)

G =G, - ﬁ Y, dr,e,, forhk =u,p,o. 20

The above restriction (i) ensures that the double integrations (20) have a meaning and
fead to finite integrals even in the presence of the hypersingularitics for x = & (Sirtori et al.,
1991). In fact, the hypersingular integrals can be interpreted as work assoctated with a
suitably loaded (or “pressurized™) crack in Q.. Note that all kernels involving subscript o
do not exhibit singularitics in integrations (20) since x # &, except G,,. However, the
improper domain integral containing G, is a usual ingredient of traditional BE plastic
analysis and, therefore, is not discussed here [see Bui (1977)].

We now introduce the discretization (17) and (18) into egns (I 1), taking account of
the second (ii) of the above modelling restrictions. Substituting thereafter eqns (12) into
(11), using the definitions (19) and (20), after trivial manipulations the Betti eqgn (11) can
be given the form:

F** ' G e - Cup G ues P 0
—-D** "'Crm ﬁf'r' —Cm Ur_<0 =0 (22)
o** G -G, G, (¢} b

Let us partition the vectors of boundary variables into subvectors pertaining to I', and
[,. marked by subscript p and w, respectively :

P U Fre D*
SN RS

The boundary unknowns P, and U, will be gathered in the vector X. A system of as many
independent linear algebraic equations as boundary unknowns is generated by requiring

the Betti equation (22) to hold for every F*, D?*. This system can be wrriten as:
SA3 29:2-1
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Ax+CO+B =0, setting A = g L = w )
setting [‘_ng G :l C [—Gfm] (24)

where superscripts « and p specify submatrices defined by the vector partitions (23) in the
matrices which show up in egn (22).

In eqn (24) B denotes the resulting vector which contains the boundary data P, and
U,. The coetlicient matrix A is readily seen to be svmumetric as a consequence of the
reciprocity relations {21) and of the modelling restriction (iit). In fact. this easily fulfilled
assumption makes the integral in eqn (21) vanish so that (.}w, = (}f,,,‘.

Alternatively, non-symmetric systems of independent equations might be generated
from eqn (11). For example. using static discontinuitics only (F**) on the whole boundary
[". one arrives at the customary Somigliana equation enforced on I"in a Galerkin weighted-
residual sense (rather than by collocation) as in Parreira and Guiggiani (1989).

The arbitrariness of vector ©** in eqn (22) gives rise to the following equation (B’
being a new vector of data containing the external actions)

CX+B+G,,0=2".

-
1o
wh

Clearly. it © governs a ficld of assigned initial strains (such as thermal strains), egn (25) is
decoupled from eqn (24) and yields the generalized stresses £ as soon as cqn (24} s solved
with respect to the boundary unknowns X. Here, however, @ is interpreted as governing
the unknown plastic strain ticld (initial strains J,,, not considered here for simplicity, would
merely contribute to the data vectors). Henee, egns (24) and (25). are coupled and must be
combined with the plastic constitutive relations expressed in a suitable form to be discussed
in the subsequent section.

PLASTIC CONSTITUTION IN GENERALIZED (CELL) STRAIN AND STRESS INCREMENTS

In this section we derive from the above matenial model a set of relations between
generalized strains @ introduced through the discretized egn (17¢) and genceralized stresses
¥ defined by eqn (19). The notions and use of generalized vartables and “consistent™
modelling had been proposed for BE elastoplasticity by Maier (1983) und Muaier and Nappi
(1984) and are studied in some detail by Comi er al. (1991b) with reference 1o finite
clements; hence, a concise presentation will be given here. Related works in the finite
clements context by Oden and Brauchli (1971 and Corrudi {1978) scem espectally worth
quoting.

The requirement for £ and © to be generalized variables in Prager's sense reads:

j‘ o' dQ =2X'0., forany X O. (26)
()

Having chosen the strain shape matrix W, egn (17¢). this requirement is casily scen to be
satisfied if the stresses are modelied as:

H
a(x} =¥, (x)X, where: W, (x) = ‘l’,;(x)[ Wi, dQ] . 27

Jit

Equation (27a) can be regarded as the inverse of eqn (19) which defines the generalized
stress vector ¥ as weighted averages of local stresses 6.

Similarly. generalized yield functions ® and plastic multipliers AA can be introduced
to govern the fields of the relevant local quantities:
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and will be required to satisfy the condition: | $A4 dQ = ®'AA for any ® and AA. This
leads to the inverse relations of models (28) and to a dependence between their interpolation
matrices :

-1
'[ W,ALdQ = AA, f YodQ=0, ¥Y,=VY, l:f 4% 4 dQ] . (29)
[ 0 [+

Finally, generalized kinematic and static internal variables gathered in vectors H and
Q. respectively, will be adopted in order to discretize by interpolations the relevant fields
(H is a Greek letter, capital counterpart to ) :

n(x) = ¥,(x)H: q(x) =¥, (x)Q. (30)

Once again we require the conservation of the dot product (which intervenes in the thermo-
dynamic postulate on dissipation, eqn (7)), namely that: j}, q'n dQ = Q'H for any Q and
H. This leads to a relation set similar to (29):

~ 1
f\v;qm:u, j‘l’:,qu=Q. ~v,,='v"U \v;-v,dn] . (31
3] i8] 1

By combining the material model written in step-holonomic back ward-difference form,
eqns (8) -(10), with the modelling relations (17¢), (19) and (27) (31), we obtain the following
plastic refationships in generalized variables for the finite-step problem delined over the
time interval At starting from a known situation at 7 = 1, (barred quantitics) :

Al I3l
®="_ (EQL+  (EQQ-Y<0, A0, BAA=0 (32)
D 2Q
o' '1(')'
AO = ‘*{5-‘, ¥, Q)AA, AH = — L""Q' (. Q)AA (33)
et 1%
ow H 34
having set:
E=L4+AE, Q=Q+AQ, Y= J WipdQ, W= J w(¥'H) dQ. (35)
(2 8}

Equations (32)-(34) enforce the material plastic constitution in a weak, weighted-average
sense and can be regarded as non-local constitutive laws written for each one of all cells
simultancously.

Similarly, elastic laws for cells can be derived from Hooke's material law (3) through
eqn (19) and interpolation (17c¢), the latter being attributed to total strains e(x) and to the
relevant generalized variables gathered in vector E:

L= f WYk (e—&)dQ=K-(E-0Q), withK = L Yok, dQ (36)
o

where k denotes the stiffness matrix of elastic moduli, i.e. the inverse of the elastic compliance
tensor Cin eqn (3).
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In a parailel paper by Comi er al. (1990) various options for choosing the generalized
variables and the relevant interpolations. are comparatively discussed from the
computational standpoint. For the practically advantageous options which give rise to a
decoupling (cell by cell) of the constitutive formulation (32)-(36), it ts proved in the above
quoted paper that the essential constitutive features carry over from the local material level
to the average cell level. In particular this occurs for the features specified in the sec-
tion on constitutive restrictions (normality, convexity. stability, order-one homogeneity).
For example. consider the convexity assumed for the yield function expressed by the
inequality (denoting by primed and unprimed symbols any two pairs of material variable
vectors. 6'q" and aq) :

3

¢(0.q) = ¢(a’.q) + ;ﬂ (6.q) (6—0a)+ (Cg (6".q") - (q—q"). (37a)

a,!

Assume now (as in the example to be presented later) a piecewise-constant modelling of all
variables over Q ; namely. identify the generalized kinematic variables of each (say triangular
or tetrahedral) cell with their local counterparts in its centroid <., index ¢ running over the
cell set; thus, througheqns (19), (26b) and 31b) 1 ' = { . . Q6'(X) .. }. ®' = {. . Q.d(X) .. }.
Q = {..Q4q'X)..}. It is self-evident in this special case (but could be shown for other
models of practical interest) that the convexity inequality (37a) gives risc to an analogous
incquality in generalized variables, which means convexity of all generalized yield functions:

-~

‘D

b s ’ ‘ a¥d ’ -~ A (1
DEQ) > DT, Q)+ | (¥.Q) (XX + |

o ' 37b
Q.(-vQ) (Q-Q). (37b)

Similarly, convexity of material potential w(y) can be scen to entail convexity of the
generalized potential H7(HD

it 74

&
S S .
WD > W)+

(FH) - (H = H"). (38)
Note that, while the material model was attributed a single yield mode (smooth yield surface
in @ space). the cell constitutive law may exhibit a multiplicity of modes (yield surface with
“corners” in ¥ space) when the model of the yield function ¢ over cells is no longer piecewise
constunt.

THE DISCRETIZED ELASTIC-PLASTIC PROBLEM IN FINITE INCREMENTS

After the preceding time and space discretizations, let us now assemble the complete
set of relationships which govern the responsc (holonomic in the step) to finite increments
of external actions over the time step Av, starting from a known state at = ¢,,.

Equations (32)-(36) describe the constitutive law, approximated by a backward-differ-
ence formulation and enforced in a weighted-average sense over cells.

The discretized boundary integral eqns (24) can be rewritten here for increments

AAX+CAO+AB = 0. (39)

The discretized integral eqn (25) resulting from the discretized Betti's integral eqn (22),
when it is imposed to hold for any arbitrary vector @**, provides another linear equation
for increments: namely. the following representation of the generalized stress increment
vector:
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AT = CAX+G,,AO+AB'. (40)

Equations (32)-(40) define the finite-step elastic—plastic problem we are primarily
concerned with in this paper.

An alternative, more compact formulation is achieved by solving once for all eqn (39)
with respect to AX and substituting this into eqn (40). Thus we can associate with eqns
(32)—(36) the single equation:

AL +ZAO = AL 41)
having set:
AL =AB' -CA~'AB, 2z=G,,-CA"'C. (42)

Vector AX® defines the linear elastic stress response to the load increments. Matrix Z
transforms generalized plastic strain increments into consequent stresses AX® = AX —AXL°
(self-equilibrated in the approximate sense consistent with the modelling). Matrix Z is easily
seen to be negative semi-definite: in fact, — A@'AL" represents the strain energy stored in
the body due to strains A® conceived as external actions. Finally, Z exhibits a self-evident
symmetry which would not be exhibited by its counterpart in other BE methods (A would
not be symmetric in eqn (42b)).

EXTREMUM THEOREMS FOR THE DISCRETIZED ELASTIC-PLASTIC
FINITE STEP PROBLEM

The solution of the clastic-plastic problem in finite increments formulated by eqns
(32)-(36) and (41) after the time and BE-space discretizations carried out in what precedes,
can be related to the solution of suitable minimization problems by virtue of the solution
propertics stated and proved in what follows.

Proposition |. The (any) solution to the finite-step BE-discretized problem governed by
egns (32)-(36) und (41) also solves the following optimization problem :

min {w(AO,AA,AE,AH) = —1A@'ZAO+ Y'AA — (£ +AX)'AQ + W(A +AH)} (43)

I

subject to the constraints

o loY
— »* - — *
AA 20, AG= 5 (£*,Q)AA, AH = 70 (Z*,Q)AA (44)
where
aw
T*=L£+K-(AE-A0): Q=Q+AQ=5—E(H+AH). (45)

Proof. We will denote below by capped symbols quantities pertaining to the solution of
the discretized b.v. problem in finite steps (32)-(36) and (41) and by primed symbols
quantitics which comply with constraints (44), i.e. “feasible”™ vectors for the constrained
optimization (43)-(44). With these symbols one can easily realize that the following chain
of rclations holds :

W =0 = — A —AOQ)Z (AQ' - AB)+AO'Z- (AO - AOQ)
+Y' (AN =~ AA) = (£ 4 AZ) - (AQ = AB) + W(H") — W(H)
> £ (A0 -A0) - Y'- (AA - AA) + Q' (H) - (H'—H)
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-

[~w (E*.Q)-Z+ 467(“ .Q)-Q- \] > AN -DAN. (46)

N

(L. Q)-Q—\']A.‘\

2 o
14

Q)£+

11, &

“®
Q

-
"“J

In fact, noting that in eqn (46) it has been set:
L=E+4AX+2740. (47

the inequalities in (46) can be justified taking into account: the symmetric negative semi-
definite nature of matrix Z generated by the Galerkin symmetric BE formulation; the
homogeneity of effective stresses ; the constitutive convexity assumptions (b) and (c¢).

Since on the right hand side of the latter inequality (46) the first addend vanishes and
in the second ® < Oand AA’ > 0, the stated circumstance that @’ > ¢ is ascertained (q.e.d.).

Note that the converse of Proposition | is not proved yet, i.e. an optimal vector for
the optimization problem (43)-(44) was not shown to solve the finite-step problem (32)-
(40). A sufficient (gencrally not necessary) condition for such a solution is provided by the
tollowing statement concerning another minimization problem.

Proposition 2. The set of solutions for the finite-increment discretized b.o. problem (32)-
(40) coincides with the set of Kuhn-Tucker points of the following optimization problem :

min {(AQ, AA, AE, AH) (48)
subject 1o
AA =0 (49)
where, using again egns (45), the objective function reads:

{ = —\AQ'ZAO + Y'AA — (£ +AX")'AO + W(FT + AH)

‘:’, (}:*.Q)AA} —Q' (N +AH)- [AII+
{

D!

2Q (x*, Q)AAJ. (50)

+E*"LA(~)—

As a consequence, an optimal vector for problem (48) (49) also solves the finite-step problem

(32)-(40).

Proof. Let us write the Kuhn -Tucker conditions (of stationarity in the generalized sense)
for the non-linear mathematical programming problem (48)-(49). Denoting by u a vector
of Lagrangian multiplicrs for constraints (49) and adopting index x over the set of gener-
alized yield functions and the summation convention for «, the Kuhn -Tucker conditions
read:

—~7A0 ~£ AT~ |:A()— (X Q)AA]

oo, . O,
[H—l\ sy OA ] [héﬁ@m,]o =0 (51)

h} Nl hl 2T}
Q+ [- cQ AL?’—;AA,]“W °q. [All+ o (B Q)AA:I

AH' 0Q ox oH cQ
fQ b, . -
[ i gt oo o
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‘' &0, &0,
K- [A@—- o (::*.Q)Al\} -K- [e:: e S 5 ‘Q]AA, =0 (53)
o ‘o
- ¢ Q)T*— — (T = 54
Y 52‘( Q) c“Q‘( QQ=4n o4
AAZ0. p>0, pAA=0. (55)

Substituting eqn (53) into (51), we obtain an equation which expresses the equilibrium of
stresses £* defined by eqn (45a):

I* = L+AT +ZA0. {(56)

In view of the positive first-order homogeneity hypothesis (d) and as a consequence of
Euler’s theorem on homogeneous functions, one can casily realize that the following prop-
erty of the Hessian of @, holds true:

P
T | fom, o T 0
‘fg: o, . } = . (57)
PR ESINN} Qf = lo
0Q £Q

Therefore, taking account of (56), eqn (53) reduces to:

o
AOQ = . (X*,Q)AA (58)
)

and, if 2QY/0OH is non-singular (i.¢, in view of hypothesis {¢), ¥ is strictly convex), egn (51)
yields:

o {
AM = - 5o (21 Q)AA. (59)

Now, by associating eqns (56), (58) and (59) to eqns (54) and (55), one recovers the
complete set'of relations governing the finite-step problem and, thus, shows its equivalence
with the Kuhn-Tucker conditions of problem (50} (g.e.d.).

It is worth noting that the Kuhn-Tucker conditions are necessary for optimality, but
generally not suflicient, unless the optimization problem is convex. Problem (48)-(50) is
not convex in general and, hence, Proposition 2 does not imply its equivalence to the finite-
step problem. However, on the busis of the preceding Proposition 2, we can now prove the
converse of Proposition [, i.e. the following statement :

Propasition 3. The (any) solution (optimal vector) to the minimization problem (43)-(45)
solves the finite-increment discretized b.v. problem (32)-(36) and (41). This circumstance
und that stated by Praposition | make the two problems equivalent.

Proof. We denote by M,,, I, and A,, the sets of optimal vectors, Kuhn-Tucker points
and admissible (or feasible) vectors, respectively, for the non-linear programming problem
(43)~(45) with objective function w. Symbols M., KK; and A, will indicate the corresponding
sets for the problem (48)-(50) with objective function {.
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Due to their very meanings. these sets satisfy the relations:
kq < K,,, < r&l,,l: Wﬂ; < :‘g: & /:\A:. (60)

Let S denote the set of solutions to the finite-increment problem (32)—(40). Propositions 1
and 2 state. respectively. that:

SseM,: S=K. (61)
Using eqns (60) and (61) we may write:

M.=sSeM, €A, (62)

AR

By inspecting comparatively the constraints of the two (w and {) optimization problems,
we notice that :

A, < AL wA) =dA,). (63)

The latter relation means that the two objective functions cotncide over the feasible domain
A,, of problem . Equations (63) imply that M; = M,, and, hence, through eqn (62). that
S = M,,. Thus the stated equivalence is justified and, therefore (through Proposition 1), a
proof is also reached for the stated sufficient condition for the b.v. problem solution (q.e.d.).

It is worth noting that the above conclusions represent ad hoc statements for the
present BE-formulation and are distinet from, though related to, those established for
continuia by Comi et ¢l (1991a), and quite distinet from those derived by convex analysis
notions ¢.g. by Martin ez of. (1987). They turn out computationally fruitful in as much as
they provide a basis for the convergence eriteria discussed in the next section by a path of
reasoning in 4 sense parallel to the one followed by Comi and Maier (1990) in a finite
clement context.

AN ALGORITHM AND A CONVERGENCE THEOREM FOR THE ITERATIVE SOLUTION
OF THE STEP PROBLEM
The finite-step problem (32)—(36) and (41) can be numerically solved by the following
iterative algorithm (“successive substitutions™ or modificd Newton-Raphson algorithm).
This is basically the conventional pattern adopted in the literature on non-symmetric BEM
in plasticity, as e.g. in Brebbia er al. (1984) and Cruse and Polch (1986).

(1) Generate the coefficient matrices once for all: A, C, G,, and, consequently, via eqn
(42b), matrix Z.

(2) For the current step compute the linear-elastic stress response AL® to the given
load increments, eqn (42a).

(3) Initialization: for i = 1 assume either A® = 0 or A® equal to the best guess based
on the preceding loading step.

(4) Prediction: from the iterate /—1 of plastic strain increments, compuie the new
stress increments, AX through cqn (41).

(5) Correction : compute through the constitutive law (32)-(34) the new plastic strain
increments AQ.

(6) Termination test: i the changes in @ from iteration i — 1 to / do not exceed in
norm a preassigned tolerance, enter the data of a new loading step and perform phase 2.

Assume that the first i— 1 iterations have led to plastic strain increments AQ ™'
According to the envisaged algorithm, the ith iterate is generated by the following
computations:
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AT ' = AT +ZAO ', AE = K 'AT" 4 A@ ! (64)
. L U
AO = ;_v{:*: Q)AN. AH = — ;—Q(‘;*‘_Q‘}AA‘, AN >0 (65)
. . Y .
L E*'. i Etl i zmn i iy s X i / [
O = S (EHQIINF S (E.QIQ -V S0 O8N =0 (66)
_ o ew
TH = E4K-(AE-A0): Q= o (A+AH). (67)

The linear “prediction” (64), resting only on the discretized integral equations, enforces
equilibrium and compatibility in the system as a whole, supposed to be linear-elastic.

The “correction” restores the elastic—plastic constitutive law at the price of new equi-
librium viclations ; it requires the solution of the non-linear equations and inequalities (65)-
(67) in AA', A®' and AH'. but is carried out locally cell by cell in a decoupled form [ep.
Comi et al. (1991b)],

The equivalence between the discretized b.v. problem in finite increments and a mini-
mization problem established by Proposition 3, leads to the following, computationally
meaningful result concerning the above solution technique.

Proposition 4. The iterative “successive substitution” method specified by eqns (04)-(67)
Sor solving the finite-step problem (32)-(36) and (41) does converyge 1o the (or to a) solution
of it.

Proof. Let us evaluate the difference between the values «f ' and o of the objective
function a, eqn (43), at the end of Herations i — 1 and 7 respectively :

A= "= = =}AQ =AQ' V- (AQ' ~AQ' )+ AQ'Z (A —-AOQ' )

— Y (AN —AA Y+ (EHALY (A A0 )+ W+ AH ) — WL +AIF).  (68)
In view of the negative semi-definiteness of matrix Z and of the convexity of function W
and making use of egns (67), the difference Aw can be bounded from below as tollows ;
Aw 2 T (AQ —AQ = Q' (AH' ~AH " )~ Y'-(AA'—AA'" 1)

+(E+AL +ZAQ —L*¥) - (A - AQ 1), (69)

Substituting eqns (65a,b), (67a) and (64b) into eqn (69), taking into account the homo-
geneity and the convexity (37b) of @' and, finally, rearranging, one obtains:

Aw 2 O AN —D AN +(AG - AQ' ) - (Z+K) - (AQ - A ), (70}

The first addend is equal to zero by virtue of eqn (66¢) ; the second is non-negative due to
eqns (65¢) and (66b) : the last addend is also non-negative. In order to ascertain the third
of these circumstances, consider the quadratic form associated with matrix Z+K and give
it alternative expressions as follows:

O (Z+K)O = ~Q'ZK '2Z0+0O'KO = (0+K 'ZO)K- (O + K~ 'ZO)
-20'Z<-(0+K"'2Z0) = 0. (71

The latter equality in eqn (71} is readily seen to be an algebraic identity ; the former is a
consequence of the virtual work equation which also makes the last addend in eqn (71)
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vanish (because Z@ represents self-equilibrated stresses and the term in parenthesis com-
patible strains). Thus. the positive definiteness of K makes the final inequality hold.
Alternatively. this inequality can be derived from the stronger statement

{O'KO > —1Q'ZO forany © # 0. 7

In order to justify the strict inequality (72). identify its left hand side in view of eqn (36) as
the elastic strain energy due to the strain field defined by @ through the interpolations
¥, (x) when the displacements are set equal to zero everywhere. The right hand side in egn
(72) represents the strain energy when the displacements are forced to vanish on the
constrained boundary I, only. The latter situation may be transformed nto the former by
imposing in € the distribution of the reactive (body) forces supplied by the fictitious
constraints which make the displacements vanish. Since these forces are not identically zero
for @ # 0. a positive addend of elastic energy must be added to the right hand side of egn
(72). This implies. through eqn (70) and the preceding conclusions on its addends. that
A = 0 and that Ae» = 0 if and only if A@" = A@" ' (q.e.d.).

NON-LINEAR STABILITY OF THE TIME INTEGRATION PROCEDURE

In general terms, the evolution in time of a mechanical system is said to be stable it a
perturbation in the inttial conditions is attenuated as time ellapses. Stability in this sense
has been discussed for continuum initial-boundary value problems (like eqns (1) (7) with
suttable constitutive restrictions) and for thetr time discretizations (Like the Euler-backward
scheme, cqns (8) (10)), separately from or in combination with finite clement discretizations
in space. Representative contributions are due to Butcher (1975), Nguyen (1977), Simo
(1991, Simo and Govindjee (1991) and Reddy and Martin (1990). Contractivity or, better,
non-expansivity, B- or non-lincar stability (at ditference from A- or incar stability for lincar
stepping algorithims) represent alternative denominations used in the literature for the
property in point.

The stability property of the original set of non-hncur differential relations governing
the behaviour of an inclastic continuum may or may not be inherited by o numerical
solution method characterized by a space discretization and a tme-stepping procedure.
Cstablishing that it is inherited usually presents a non-trivial task, which has not. to the
writers' knowledge, been tackled in the BE context.

The desirable stability property to assess here concerns the flow of successive finite-
step solutions generated by the algorithm described in what precedes for the synimetric BI
clastic plastic analysis. Namely, an algorithm-independent norm of the difference between
the original and the perturbed step-sotution will be shown below to decrease or at least not
to increase alony the step sequence, assuming the further constitutive hypothesis of fincar
hardening (including perfect plasticity). More precisely, with the present symbology this is
expressed by the following statement.

Proposition 5. Consider the generalized stresses and internal variables £.Q which define
the stute of the BE-discretized systent at time 1, and vectors . Qowhich define a “perturbed”
state of it at 1, The perturbation implies O #£0 bur £ =70+ does not violute the
(approximate) equilibrivnnwith the load at 1, Let X = THAL.Q =Q+AQundE = L AL,
Q= (=) +AQ denote the two pairs of generalized variable vectors at the instant 1, = 1, + AL,
generated by the solution of the finite-step problem, eqns (32) (40). for the given load
increments (captured in the elastic stress increments AXS) starting from the actual and from
the perturbated state, respectively. Assume strictly stable, lincarly hardening material so that
cqn (34) becomes

Q =MH where M= [ Yom', dQ. (73)
191

m heing the constant positive definite Hessian matrix of w(n). Then, the following “non-
expansivity” inequality holds :
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E-DK ' E-D+iQ- QM ' (Q-Q)
<HE-DK " E-H+IQ-QM - Q-Q. (79

Proof. First note that the assumption of strictly stable linearly hardening material means
that the material constitutive eqn (6) specializes to g, = mun so that w = in'my with
matrix m = [m,,] positive definite. As a consequence through eqn (35d). eqn (34) in the
generalized internal variables reduces to eqn (73) and the Hessian matrix of generalized
potential W with respect to the generalized kinematic internal variables H
(M = & W/éH éHY) turns out to be symmetric, positive definite and constant with respect
to H. Thus the convexity property, eqn (38). is satisfied a fortiori.

The difference d between the left hand side and the right hand side of eqn (74) can be
expressed in the form:

d=YE-T+E-2K-'-(AZ-AD) +4Q-Q+Q-Q'M - (8Q-4Q). (79)
In the two quadratic addends of eqn (75). let the first factors be split into two addends
through a readily verified identity ; let AL and A® be rewritten using the step governing
eqns, (41) and (73a), respectively. Thus eqn (75) becomes:

d=(E-2)K 'Z-(A0-A0) - (AL —AL)'K " '- (AL —AY)
+(Q-Q)'M "M+ (Afl—AH) - {AQ -AQ)'M ' - (AQ —AQ). (76)

The sccond and the fourth term on the right hand side of eqn (76) are, clearly, non-positive.
The first addend can be transformed using the virtual work equation:

E-2)[K 'Z-(AO-A0)+(A0-A0)] =0 an

and, subsequently, the constitutive eqn (33a) expressing normality. [n the third term we
make use of the constitutive eqn (33b). Thus, eqn (76) gives rise to the inequality

o

d < (2—2)*-[ S (E, Q)R+ -H(E Q)AA:I

+(Q—Q)"[— (L, Q)AA+ (>- Q)A/\] (78)

2Q Q

The convexity of the generalized yield functions @, eqn (37b), leads to the following upper
bound on the right hand side of eqn (78) and, hence, on the difference d:

d < [OE,Q)—dE Q)] - (AXA - AA). (79)

Since the complementary constitutive relations (32) must be complied with both by the
undisturbed and perturbed step solution, it is easily scen from eqn (79) that 4 <0 as a
consequence (q.e.d.).

Remarks. (a) Inequality (74) means that a measure of a disturbance does not increase
from the onsct to the end of a finite loading step, if one solves the relevant discrete
non-linear step-problem generated as proposed herein (i.e. symmetric BE in space, Euler
backward-difference in time). This non-linear stability property turns out to be independent
from the step amplitude (unconditional stability). The perturbation measure in eqn (74)
can be regarded as a “natural™ energy norm [cp. Simo (1991)]. In fact, it has the mechanical
meaning of complementary Helmholz **free energy™ associated with the difference between
the actual and the disturbed evolution.
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Fie. 1A steel specimen for fracture tosts (lengths in mm).

(b) The limitation of the preceding stability theorem (Proposition 5) to lincar hardening
was dictated by the mathematical simplicity and the brevity of the proof. Note that perfect
plasticity is covered as a special case for vanishing locked-in strain energy (w = 0, W = 0)
and, hence, for yield functions not affected by static mternal variables (¢ = 0, Q = 0).
Thercfore, tor perfectly plastic solids the latter quadratic form in eqn (74) is missing and
the stabidity statement concerns a norm ol stress ditferences only. In fact, in ideal plasticity
unmqueness is guaranteed in the stress response history only ; the evolution of the kinematic
variables can exhibit multiple solutions which form bounded or unbounded sets, cor-
responding to “pscudomechanisms™ or collapse mechantsms, respectively [ep. c.g. Smith
and Munro (1978)}.

NUMERICAL TESTS

The fracture specimen depicted in Fig. | and interpreted as a plane stress system, will
be analyzed below for testing and illustrating the preceding theoretical results. The material
is steel conceived as an elastic perfectly plastic von Mises material characterized by elastic
moduli E = 210,700 MPa, v = 0.27, and by a yield stress g, = 560 MPa. Details on the
2D computer implementation of the symmetric Galerkin BE method adopted herein are
presented elsewhere (Maier et al., 1991).

Figure 2 shows the adopted subdivision of the boundary I' into BEs and of the

1G

Fig. 2. Mcsh of the boundary clements and cells; @ is the vertical displacement, constant on the
refevant clement, imposed as external actions.
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potentially yielding subdomain Q, into cells. The interpolations adopted are: linear for
boundary displacements : constant for boundary tractions; constant for strains and plastic
multipliers over domain cells, being understood that the conjugate static variables (X and
®) are “consistently™ defined as generalized variables according to the path of reasoning
expounded in an carlier section, The reflective symmetry of the system is imposed on the
variables in the solution process, so that the axis of symmetry need not be discretized (as
usual in BE analysis). A cycle 0+0.5+0 mm of imposed transversal displacement i (Fig.
2) is performed and subdivided into |5 steps marked in Fig. 3. In this figure the computed
resultant of the reactive tractions (per unit thickness) provided by the rigid displacement-
controlling device is plotted (in N mm ') as a function of i (in millimetres). The iterative
solution processes of three loading steps (Nos 5, 10, 14) were examined assuming the
termination tolerance at cell level (index ¢) :

AO] - [|AG; " 4
Aol BT T L 8(
” AG’ ”l“il\ IO ( ))

where the norm || - |f is defined as the von Mises equivalent plastic strain and JAQ" |, 18
the maximum, over the cells, of the von Mises equivalent strain increment in the current
iteration r.

As expected from the developed theory, Fig. 4 shows the decrease to a minimum of
the energy function w (per unit thickness, hence in N) of the equivalent minimization, eqns
(43)-(45). along the iteration sequence of the three finite-step solutions by the “successive
substitutions™ algorithm described carlier. The abscissac of Fig. 4 are the values of a
meaningful independent variable of «, numely the non-dimensional plastic multiplicr of the
cell No. | on the symmetry axis at the bottom of the specimen notch. Along the graphs
every interval between two square marks corresponds to 20 iterations of the solution
procedures.

In Fig. 5 the number of these itcrations is taken as the abscissac and again the objective
function @ as the ordinates. The flattening of the three curves and the relatively large
numbers of iterations are due to the very small tolerance chosen for the termination test.
As expected the speed of convergence turns out to be smaller for higher numbers of **active™
(yielding) cells (i.e. from step 14, to 5. to 10).

CONCLUSIONS

The basis of this study is provided by the symmetric Galerkin double-integration
formulation of BE inelastic analysis proposed by Maier and Polizzotto (1987) and developed
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Fig. 4. Objective function Q of the equivalent optimization versus AA, of cell 1 at the bottom of
the notch, for the iterative solutions of three steps (a mark cvery twenty iterations).

as for the computer implementation (in 2D) by Sirtori ef al. (1991) and Maier ¢z af. (1991).
With reference to this method, the following results have been established in what precedes.

The symmetric BE formulation, in terms of cell gencralized variables gencrated by
suitable weighted-average enforcement of the constitutive law, has been extended to general
associative clastic plastic material models with internal variables.

The finite-step stepwise-holonomic problem has been formulated by an implicit Euler
backward time integration scheme and its solution was proved to be equivalent, under
suitable constitutive stability conditions, to the solution of a generally non-convex con-
strained optimization (non-lincar programming problem). As a consequence, an iterative,
modificd Newton -Raphson method for solving the step problem has been shown to con-
verge on the finite increment solution, Numerical tests confirmed and illustrated the extre-
mum and convergence properties pointed out.

The approximate time integration method considered, under the restriction of lincar
hardening was shown to exhibit non-lincar stability, tn the sense that a perturbation cannot
grow along the flow of step solutions.

-2.00 q
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2 -s00
Q
G -10.00 4
z
2 1 STEP 10
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NUMBER OF ITERATIONS

-16.00 — 1
0

Fig. 5. Objective function € versus iteration counter for the iterative solutions of three toading
steps.
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[t is believed that the conclusions of this paper cannot be reached in the framework of
the traditional (non-symmetric) BE formulations and that this fact represents a remarkable
advantage of the symmetric Galerkin formulation adopted herein.
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